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Abstract
The behaviour of a three-dimensional Ising-like system at temperatures above
the critical value of Tc is studied in the approximation of the sextic distribution
for modes of spin density oscillations (ρ6 model). The original collective
variables method is developed in this higher non-Gaussian approximation for
calculating the thermodynamic characteristics of the system near Tc taking into
account the first confluent correction. The calculations are illustrated by an
example of a simple cubic lattice and an exponentially decreasing interaction
potential. The main distinctive feature of the method is the separate inclusion of
the contributions to the thermodynamic functions from the short-wave and long-
wave spin density oscillation modes. The dependences of the phase transition
temperature, leading critical amplitudes, and correction-to-scaling amplitudes
for the specific heat and susceptibility on the microscopic parameters of the
system are investigated.

1. Introduction

The description of phase transitions and critical phenomena, i.e., the construction of a
microscopic theory of phase transitions, is one of the central problems in statistical physics.
Persistent scientific interest in phase transitions is stimulated by the exceptional significance of
these phenomena for modern technology, their complexity near the phase transition point, and
the difficulties of their theoretical and experimental investigation in view of the increasing role
of large-scale fluctuations and large relaxation times. Comprehensive and intensive studies
of phase transitions have made it possible to formulate new concepts revealing the essence of
1 Author to whom any correspondence should be addressed.
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critical phenomena and to develop a powerful mathematical apparatus for their description.
These questions have been considered in a number of books (see, for example, [1–4]) and
articles (for example, [5–8]). In most papers devoted to the theory of phase transitions,attention
is primarily paid to determining the universality class of the systems, investigating symmetry
properties irrespective of the seed parameters in the initial Hamiltonian, solving recurrence
relations (RR), and calculating critical exponents. Important experimental results are obtained.
Universal ratios and combinations of critical amplitudes for thermodynamic characteristics are
calculated for spin systems, in particular, for the three-dimensional (3D) Ising model. The
problem of the dependence of critical amplitudes on the microscopic parameters of the system
required a consistent analysis and could be solved successfully together with the main problem
in the theory of phase transitions, i.e., the derivation of explicit expressions for thermodynamic
characteristics of the system near the phase transition point as functions of temperature and
microscopic parameters. Considerable progress in the solution of this problem was made by
using the method of collective variables (CV) generalized by Yukhnovskii [9–12] to the case of
spin systems. The term ‘CV’ is applied to a special class of variables specific to each individual
physical system. The set of CV contains variables associated with order parameters. For this
reason, the phase space of CV is the most natural one to use for describing a phase transition.
For magnetic systems, the CV ρk are the variables associated with modes of spin moment
density oscillations, while the order parameter is associated with the variable ρ0, in which the
subscript ‘0’ corresponds to the peak of the Fourier transform of the interaction potential. The
recent results from investigating the critical behaviour of 3D Ising-like systems using the CV
method are presented in [13].

This paper supplements the previous study [14] based on the CV method. In [14], the
thermodynamic functions of the classical n-vector 3D magnetic model near Tc were calculated
in the approximation of the quartic distribution for the spin density oscillation modes (ρ4

model) without taking into account confluent corrections (corrections to scaling). In the
present publication, the results of calculating the thermodynamic characteristics of a 3D Ising
ferromagnet are obtained using the higher non-Gaussian distribution (ρ6 model). In the process
of determining these characteristics, a technique for calculating correction-to-scaling terms is
elaborated. The employment of the ρ6 model for the investigation of the phase transition
by the CV method gives a more precise definition of the calculation results and provides the
basis for quantitative analysis of the critical behaviour of 3D Ising-like systems including the
nonuniversal characteristics. On the other hand, the dependence of nonuniversal quantities
on the microscopic parameters of the system has not been studied deeply enough so far.
Such a study is our aim in this research. The results obtained can be used for interpreting
experimental results concerning the behaviour of real materials in the vicinity of the second-
order phase transition point, and the computational technique proposed here for thermodynamic
characteristics can be used for calculating their thermodynamic functions in the critical region.

2. Method of the calculation

We consider a 3D Ising-like system on a simple cubic lattice with period c. The Hamiltonian
of such a system has the form

H = − 1
2

∑
j,l

�(|j − l|)σjσl (1)

where �(|j−l|) is the potential of interaction of particles at sites j and l, and σj is the operator
of the z-component of spin at the jth site, having two eigenvalues +1 and −1. The interaction
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potential is an exponentially decreasing function

�(rjl) = A exp

(
−rjl

b

)
. (2)

Here A is a constant, rjl is the interparticle distance, and b is the radius of effective interaction.
The approximation for the Fourier transform of the interaction potential is taken in the form [11]

�̃(k) =
{

�̃(0)(1 − 2b2k2) k � B ′

0 B ′ < k � B
(3)

where B is the boundary of the Brillouin half-zone (B = π/c), B ′ = (b
√

2)−1, �̃(0) =
8π A(b/c)3.

We shall use here the method of CV [11], which allows us to calculate approximately the
expression for the partition function and to obtain complete expressions for the thermodynamic
functions near the phase transition temperature Tc in addition to universal quantities (critical
exponents).

In the CV representation for the partition function of the 3D Ising model, we have

Z =
∫

exp

[
1
2

∑
k

β�̃(k)ρkρ−k

]
J (ρ) (dρ)N . (4)

Here the summation over the wavevectors k is carried out within the first Brillouin zone,
β = 1/(kT ) is the inverse temperature, the CV ρk are introduced by means of the functional
representation for operators of spin density oscillation modes ρ̂k = (

√
N )−1 ∑

l σl exp(−ik·l),

J (ρ) = 2N
∫

exp

[
2π i

∑
k

ωkρk +
∞∑

n=1

(2π i)2n N1−n

× M2n

(2n)!

∑
k1,...,k2n

ωk1 · · · ωk2n δk1+···+k2n

]
(dω)N (5)

is the Jacobian of transition from the set of N spin variables σl to the set of CV ρk, and δk1+···+k2n

is the Kronecker symbol. The variables ωk are conjugate to ρk, and the cumulantsM2n assume
constant values (see [11]). The expression for the partition function (4) cannot be calculated
exactly due to the presence of an infinitely large number of terms in the exponent (5). For
this reason, approximations limiting the number of terms in the exponent of the integrand
in (5) are used. A certain approximation of the integrand in the expression for J (ρ) used when
calculating the explicit form of the Jacobian of the transition determines the choice of the model
(models ρ4, ρ6, etc). For n = 1, we obtain the Gaussian approximation. It leads to classical
values of critical exponents. An important condition in describing the critical properties
of the Ising model is the use of non-Gaussian densities of measures. The approximation
corresponding to n = 2 is based on a quartic density of measure (the ρ4 model). This
approximation is used for calculating the critical exponents of thermodynamic characteristics,
complete expressions for these characteristics taking into account confluent corrections, and
for analysing the relation for critical amplitudes (see, for example, [15–17]). In view of the
approximate calculation of the partition function, confined to the ρ4 model, the results obtained
(critical exponents, amplitudes, and thermodynamic functions) contain a certain dependence
on the renormalization group (RG) parameter s. This dependence becomes much weaker as
the form of the non-Gaussian density of measure becomes more complicated (transition to
the more complicated models ρ6 (n = 3; see (5)), ρ8, and ρ10). This is confirmed by an
analysis of the behaviour of the critical exponent of the correlation length ν for the models
ρ2m (m = 3, 4, 5) [18–20] as well as by a direct comparison of the curves describing the
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Figure 1. Evolution of the critical exponent of the correlation length ν with increasing parameter
of division of the CV phase space into layers s. Curves 1, 2, 3 and 4 correspond to the ρ4, ρ6, ρ8

and ρ10 models, respectively.

temperature dependences of the thermodynamic characteristics calculated for the models ρ4

and ρ6 at different values of the parameter s [21, 22]. For each of the ρ2m models, there exists
a preferred value of the parameter s = s∗ (s∗ = 3.5862 for the ρ4 model, s∗ = 2.7349 for
the ρ6 model, s∗ = 2.6511 for the ρ8 model, and s∗ = 2.6108 for the ρ10 model) nullifying
the average value of the coefficient in the term with the second power in the effective density
of measure at a fixed point. The values of s close to s∗ are optimal for the given method
of calculations. The difference form of the RR between the coefficients of effective non-
Gaussian densities of measures (expansions for the functions appearing in these relations)
operates successfully just in this region of s.

It was established [18–20] that as the form of the density of measure becomes more
complicated, the dependence of the critical exponent ν on the RG parameter s becomes
gradually weaker, and, starting from the sextic density of measure, the value of the exponent
ν, having a tendency to saturation with increasing m (which characterizes the order of the
ρ2m model or determines the summation limit in formula (5), m = 2, 3, 4, 5), changes
insignificantly (see figures 1 and 2). The point s ≈ s∗ in figure 1 corresponds to the beginning
of the ν(s) curve stabilization for each of the ρ2m models. The value of the exponent ν

in figure 2 is calculated for s = s∗. The ρ2 model (Gaussian approximation) leads to the
classical value ν = 0.500. In the case when s = s∗, we have ν = 0.605 for the ρ4 model
and ν = 0.637 for the ρ6 model. The value of the critical exponent ν for the ρ6 model
agrees more closely with other authors’ data for the 3D Ising model than the estimate in the
ρ4 model approximation (e.g., with the recent values determined using the fixed-dimension
perturbative RG (ν = 0.6304(13) [23]), high-temperature series (ν = 0.630 02(23) [8]), and
Monte Carlo simulations (ν = 0.6296(7) [24])). The Ising model corresponds to the ρ2m

model approximation, where the order of the model 2m � 4. The ρ4 model allows us to go
beyond the classical analysis and to describe all qualitative aspects of the second-order phase
transition. As is seen from figures 1 and 2, the critical behaviour of a 3D Ising-like system
within the CV method can be described quantitatively at 2m � 6, and, in particular, at 2m = 6.

The correctness of the choice of the ρ6 model for investigations is confirmed in [25, 26],
where the effective potential is studied for the scalar field theory in three dimensions in
the symmetric and spontaneously broken phases, respectively. In this case, probability
distributions of average magnetization in the 3D Ising model in an external field obtained
with the help of the Monte Carlo method were used. Tsypin [25, 26] proved that the term with
the sixth power of the variable in the effective potential plays an important role.

In this paper, the ρ6 model is used for developing the method of calculation of expressions
for thermodynamic functions of the 3D Ising system taking into account the terms determining
the correction to scaling. The calculations are made for above the phase transition temperature
Tc (high-temperature region). The expressions obtained for the leading critical amplitudes and
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Figure 2. Saturation of the critical exponent ν with increasing order of the ρ2m model.

Table 1. Values of coefficients a′
2l for various values of b.

b bI bII bIII c 2c 5c 7c

a′
0 −1.0196 −0.9863 −0.9764 −0.9218 −0.9193 −0.9190 −0.9189

a′
2 0.7023 0.7820 0.8083 0.9887 0.9986 0.9999 1.0000

a′
4 0.2212 0.2163 0.2086 0.0220 0.0028 0.0002 0.0000

a′
6 0.4379 0.3895 0.3547 0.0031 0.0000 0.0000 0.0000

the amplitudes of the first confluent correction make it possible to analyse their dependence
on microscopic parameters of the system (the range b of potential and the lattice constant c).

We shall proceed from the expression for the partition function in the approximation of the
ρ6 model. Putting n = 3 in (5) and carrying out integration in (4) with respect to the variables
ρk and ωk with indices B ′ < k � B , followed by integration with respect to the N ′ variables
ωk, we obtain

Z = 2N 2(N ′−1)/2ea′
0 N ′

∫
exp

[
−1

2

∑
k�B ′

d ′(k)ρkρ−k −
3∑

l=2

a′
2l

(2l)!(N ′)l−1

×
∑

k1,...,k2l �B ′
ρk1 · · ·ρk2l δk1+···+k2l

]
(dρ)N ′

. (6)

Here N ′ = Ns−3
0 , s0 = B/B ′ = π

√
2b/c, and

d ′(k) = a′
2 − β�̃(k). (7)

The coefficients a′
2l are defined as

a′
0 = ln Q(M) Q(M) = (12s3

0)
1/4π−1 I0(η

′, ξ ′)

a′
2 = (12s3

0)
1/2 F2(η

′, ξ ′)

a′
4 = 12s3

0 C(η′, ξ ′)

a′
6 = (12s3

0)
3/2 N(η′, ξ ′)

(8)

and are functions of s0, i.e., of the ratio b/c (see table 1). In this expressions, the role of the
arguments is played by the quantities

η′ = √
3s3/2

0 ξ ′ = 8
√

3

15s3/2
0

. (9)

The special functions C(η′, ξ ′) and N(η′, ξ ′) have the forms

C(η′, ξ ′) = −F4(η
′, ξ ′) + 3F2

2 (η′, ξ ′)

N(η′, ξ ′) = F6(η
′, ξ ′) − 15F4(η

′, ξ ′)F2(η
′, ξ ′) + 30F3

2 (η′, ξ ′)
(10)
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where

F2l(η
′, ξ ′) = I2l(η

′, ξ ′)/I0(η
′, ξ ′)

I2l(η
′, ξ ′) =

∫ ∞

0
t2l exp(−η′t2 − t4 − ξ ′t6) dt .

(11)

The value of b = bI = c/(2
√

3) in table 1 corresponds to the interaction between nearest
neighbours, b = bII = 0.3379c to the interaction between the nearest and next-nearest
neighbours, and b = bIII = 0.3584c to the nearest, next-nearest, and third neighbours [27].
At these values of b and small values of the wavevectors k, the parabolic approximation of
the Fourier transform of the exponentially decreasing interaction potential corresponds to the
analogous approximation of the Fourier transform for the interaction potentials of the above-
mentioned neighbours.

We shall use the method of ‘layer-by-layer’ integration of (6) with respect to variables
ρk proposed by Yukhnovskii [10]. The integration begins from the variables ρk with a
large value of k (of the order of the Brillouin half-zone boundary) and terminates at ρk

with k → 0. For this purpose, we divide the phase space of the CV ρk into layers with
the division parameter s. In each nth layer (corresponding to the region of wavevectors
Bn+1 < k � Bn, Bn+1 = Bn/s, s > 1), the Fourier transform of the potential �̃(k) is replaced
by its average value (the arithmetic mean in the case given). To simplify the presentation, we
assume that the correction for the potential averaging is zero, although it can be taken into
account if necessary [11]. Including this correction leads to a nonzero value of the critical
exponent η characterizing the behaviour of the pair correlation function for T = Tc. The
formal part of the procedure has already been presented for the simpler ρ4 model in [14]. In
the case of the ρ6 model, we exploit more complicated special functions of two arguments
than the parabolic cylinder functions for the ρ4 model. After the integration over n + 1 layers
of the CV space, we obtain

Z = 2N 2(Nn+1−1)/2 Q0 Q1 · · · Qn[Q(Pn)]Nn+1

∫
W (n+1)

6 (ρ) (dρ)Nn+1 . (12)

Here Nn+1 = N ′s−3(n+1) and

Q0 = [ea′
0 Q(d)]N ′

Q1 = [Q(P)Q(d1)]
N1 · · ·

Qn = [Q(Pn−1)Q(dn)]Nn

Q(dn) = 2(24/a(n)

4 )1/4 I0(hn, αn)

Q(Pn) = π−1(s3a(n)
4 /C(hn, αn))

1/4 I0(ηn, ξn).

(13)

The basic arguments

hn = dn(Bn+1, Bn)(6/a(n)

4 )1/2 αn =
√

6

15
a(n)

6 /(a(n)

4 )3/2 (14)

are determined by the mean value of the coefficient dn(k) in the nth layer of the phase space
of CV, i.e., by dn(Bn+1, Bn) as well as the quantities a(n)

4 and a(n)

6 . The effective sextic density
of measure of the (n + 1)th block structure W (n+1)

6 (ρ) has the form

W (n+1)

6 (ρ) = exp

[
−1

2

∑
k�Bn+1

dn+1(k)ρkρ−k

−
3∑

l=2

a(n+1)

2l

(2l)!Nl−1
n+1

∑
k1,...,k2l �Bn+1

ρk1 · · · ρk2l δk1+···+k2l

]
. (15)
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Table 2. Quantities f0, ϕ0, and ψ0 (which characterize the coordinates of the fixed point) and
eigenvalues El (l = 1, 2, 3) of the RG transformation matrix for some optimal values of the RG
parameter s.

s f0 ϕ0 ψ0 E1 E2 E3

2.0000 0.4212 0.3620 0.3805 3.0649 0.4811 0.0035
2.7349 0.5668 0.5647 0.4870 4.8468 0.4367 0.0032
3.0000 0.6166 0.6426 0.5178 5.5581 0.4221 0.0030

Here Bn+1 = B ′s−(n+1), dn+1(k) = a(n+1)
2 − β�̃(k), a(n+1)

2l are renormalized values of the
coefficients a′

2l after integration over n + 1 layers of the phase space of CV. The intermediate
variables ηn , ξn are functions of hn and αn and are defined as

ηn = (6s3)1/2 F2(hn, αn)[C(hn, αn)]−1/2

ξn =
√

6

15
s−3/2 N(hn, αn)[C(hn, αn)]−3/2

(16)

where the forms of the special functions C(hn, αn) and N(hn , αn) are given by (10). The
coefficients dn(Bn+1, Bn), a(n)

4 , and a(n)

6 are connected with the coefficients for the (n + 1)th
layer through the RR [19, 28] whose solutions [28–30]

rn = r (0) + c1 En
1 + c2w

(0)
12 (u(0))−1/2 En

2 + c3w
(0)
13 (u(0))−1 En

3

un = u(0) + c1w
(0)

21 (u(0))1/2 En
1 + c2 En

2 + c3w
(0)

23 (u(0))−1/2 En
3

wn = w(0) + c1w
(0)

31 u(0) En
1 + c2w

(0)

32 (u(0))1/2 En
2 + c3 En

3

(17)

are used for calculating the free energy of the system. Here rn = s2ndn(0), un = s4na(n)

4 ,
wn = s6na(n)

6 . The quantities r (0) = − f0β�̃(0), u(0) = ϕ0(β�̃(0))2, w(0) = ψ0(β�̃(0))3

are the fixed-point coordinates. The temperature-independent quantities w
(0)
il determine the

eigenvectors of the RG linear transformation matrix. The above solutions (17) naturally have
the general form of the RG solutions. A peculiar feature of the solutions is the presence of
explicit expressions for the coefficients cl. The coefficients c1 = c̃1β�̃(0)τ , c2 = c20(β�̃(0))2,
c3 = c30(β�̃(0))3, where c̃1 = c̃(0)

1 + c̃(1)

1 τ , c20 = c(0)

20 +c(1)

20 τ +c(2)

20 τ 2, c30 = c(0)

30 +c(1)

30 τ +c(2)

30 τ 2,
τ = (T −Tc)/Tc, are determined by the eigenvalues El and elements of the RG transformation
matrix, coordinates of the fixed point, and initial coefficients a′

2l . The quantities f0, ϕ0, ψ0

and the eigenvalues El are given in table 2 for some optimal values of s. For s = 2.7349, the
value of the basic variable at a fixed point satisfies the condition h(0) ≈ 0 (see, for example,
[13]).

The basic idea of the calculation of explicit expressions for free energy and other
thermodynamic functions of the system near Tc on a microscopic level lies in the separate
inclusion of contributions from short-wave and long-wave modes of spin moment density
oscillations [11, 14, 31]. Short-wave modes are characterized by a RG symmetry and are
described by a non-Gaussian density of measure. In this case, the RG method is used (see, for
example, [32]). The inclusion of short-wave oscillation modes leads to a renormalization of the
dispersion of the distribution describing long-wave modes. The way in which the contribution
from long-wave modes of oscillations to the free energy of the system is taken into account
differs qualitatively from the method of calculating the short-wave part of the partition function.
The calculation of this contribution is based on the use of the Gaussian density of measure as
the basis density. We have developed a direct method of calculation with the results obtained
by taking into account the short-wave modes as initial parameters.
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Calculating separately the contributions FC R and FLG R to the free energy from short-wave
(the region of the critical regime (CR)) and long-wave (the region of the limiting Gaussian
regime (LGR)) modes of spin moment density oscillations at T > Tc, we can obtain the
complete expression for the free energy of the system:

F = F0 + FC R + FLG R . (18)

Here F0 = −kT N ln 2 is the free energy of N noninteracting spins. Let us calculate the
contributions FC R and FLG R .

3. Thermodynamic functions of the system in the critical regime region

It is convenient to write the partition function of the model in the form [21]

Z = 2N ZC R Z LG R (19)

where the first factor corresponds to noninteracting spins. The quantity ZC R describes the
contribution of short-wave fluctuations of ρk with k ∈ [Bmτ

, B ′] (the CR region). The number
mτ of the layer in the CV space appearing in the expression Bmτ

= B ′s−mτ determines the
point of exit of the system from the CR at T > Tc. The quantity mτ can be obtained from the
condition [29, 30]

rmτ +1 − r (0)

r (0)
= −δ (20)

where δ is a constant (δ � 1), r (0) is a coordinate of the fixed point, and rn characterizes the
coefficient of the sextic density of measure of the nth block structure in the term with the second
power of the variable and is determined with the help of solutions of RR (17). In our numerical
calculations, we shall put δ = 1. In this case, rmτ +1 = 0 or dmτ +1(0) = rmτ +1s−2(mτ +1) = 0 and
the curves dn(k) are situated above the abscissa axis for all n > mτ . The factor Z LG R in (19)
contains contributions from long-wave fluctuations with k ∈ [0, Bmτ

) and corresponds to the
LGR.

The calculation of the expression describing the contribution from short-wave modes of
spin moment density oscillations to the free energy involves the summation of partial free
energies over the layers of the phase space of CV up to the point at which the system leaves
the CR region. The main task is to obtain an explicit dependence on the number of the layer.
For this purpose, the solutions of RR (17) are used.

A typical feature of the solutions of RR is a specific temperature dependence of the
coefficient c1 (c1 ∼ τ ). Taking into account the larger eigenvalue (E1 > 1) of the RG linear
transformation matrix, we can describe the main singularity for specific heat near Tc. Smaller
eigenvalues (E2 < 1 and E3 < 1) are responsible for the emergence of corrections to scaling.
Equations (17) are valid for temperatures close to Tc and, in particular, at T = Tc. In this case,
we encounter a special behaviour related to the approach of the coefficients rn , un , and wn to
their fixed values as n → ∞:

lim
n→∞ rn = r (0)

lim
n→∞ un = u(0)

lim
n→∞ wn = w(0).

(21)

This is possible only under the condition

c1(Tc) = 0. (22)
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Figure 3. The dependence of the inverse phase transition temperature on the ratio of the interaction
potential range to the lattice constant.

Equation (22) determines the phase transition temperature Tc. On the basis of (22), it is possible
to find an explicit equation for the quantity βc�̃(0) determining the critical temperature in the
case of the ρ6 model [28]:

D3(βc�̃(0))3 + D2(βc�̃(0))2 + D1βc�̃(0) + D0 = 0. (23)

Solving the equation (23) and taking into account the dependence on the ratio b/c in the
expressions for coefficients Di and �̃(0) = 8π A(b/c)3, we obtain the values of the critical
temperature βc A presented in figure 3 for s = 3. The quantity A is the constant appearing
in an exponentially decreasing interaction potential (2). In this paper, we use the potential
approximation (3), where �̃(k) = 0 at B ′ < k � B . Then we have βc�̃(0) = 0.9649 (ρ4

model, s = 3) and βc�̃(0) = 1.0419 (ρ6 model, s = 3) for the effective interaction radius
b = bI. The correction considering the presence of the Fourier transform of the potential
in the interval k ∈ (B ′, B] (�̃(k) is the small constant �̄ at B ′ < k � B) makes the
results of the calculation more precise. A direct analytic method for calculating the phase
transition temperature in the ρ4 model approximation at �̄ 	= 0 was developed in our earlier
publications [27, 33]. When we consider in our calculations the ‘tail-end’ of the Fourier
transform of the potential (�̄ 	= 0), we find for the phase transition temperature a value which
essentially approximates to the corresponding values of the critical temperature obtained by
special methods. For example, our numerical value βc�̃(0) = 1.2649 or βc J = 0.211 [27]
for the ρ4 model in the case where the potential parameters correspond to the nearest-
neighbour interaction with the constant J accords with the value (βc J )−1 = 4.5103 [34, 35]
or βc J = 0.221 654(1) [36] calculated using the high-temperature series data. Similar
values are also obtained using the real-space RG method based on the cumulant expansion
(βc J = 0.224 01 [37]) and the Monte Carlo method (βc J = 0.221 654 ± 0.000 006 [38],
βc J = 0.221 6595 ± 0.000 0026 [39–41]). Liu and Fisher [42] preferred βc J = 0.221 692,
0.221 630, and 0.221 620 for the simple cubic Ising lattice and three selected values of the
susceptibility exponent γ (γ = 1.250, 1.2395, and 1.237, respectively).

A calculation technique based on the ρ6 model for the contribution to the free energy
of the system from short-wave oscillation modes is elaborated in detail in [13, 22, 30]. In
our calculations, we take into account only the first confluent correction (which is determined
by the term proportional to τ�1 , �1 = − ln E2/ ln E1) and disregard the second confluent
correction (which is determined by the term proportional to τ�2 , �2 = − ln E3/ ln E1). This
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Table 3. The nonuniversal quantities cν , c�1 and coefficients γ
(C R)
0 , γ0, γ1, γ2 in the expressions

for FC R (24) and F (34).

b bI bII bIII c 2c

s = 2.0000
cν 1.7006 1.6514 1.6318 1.4412 1.4303
c�1 −0.1130 −0.1637 −0.1828 −0.3386 −0.3464

γ
(C R)
0 0.4135 0.4018 0.3985 0.3915 0.3923

γ0 1.8758 2.7464 3.1962 61.1798 486.699
γ1 −0.8032 −0.7759 −0.7651 −0.6734 −0.6701
γ2 −4.4816 −3.9551 −3.7548 −2.0482 −1.9599

s = 2.7349
cν 1.4168 1.3764 1.3605 1.2097 1.2011
c�1 −0.2671 −0.3075 −0.3227 −0.4468 −0.4530

γ
(C R)
0 0.4153 0.4050 0.4023 0.4047 0.4066

γ0 1.8776 2.7496 3.2000 61.1930 486.713
γ1 −0.7063 −0.6952 −0.6913 −0.6924 −0.6978
γ2 −4.6948 −4.1735 −3.9764 −2.2672 −2.1665

s = 3.0000
cν 1.3373 1.2997 1.2849 1.1462 1.1383
c�1 −0.3243 −0.3629 −0.3774 −0.4952 −0.5012

γ
(C R)
0 0.4166 0.4070 0.4046 0.4116 0.4140

γ0 1.8789 2.7516 3.2023 61.1999 486.720
γ1 −0.6867 −0.6795 −0.6773 −0.7020 −0.7100
γ2 −4.5304 −4.0342 −3.8466 −2.1971 −2.0936

Table 4. Universal factors of coefficients appearing in the nonanalytic components of FC R (24)
and F (34).

s γ̄
(C R)(0)+
3 γ̄

(C R)(1)+
3 γ̄

(0)+
3 γ̄

(1)+
3

2.0000 −0.3170 −4.6451 0.9699 0.6508
2.7349 −0.9831 −4.0744 1.8654 0.7263
3.0000 −1.2229 −3.8409 2.1770 0.7162

is due to the fact that the contribution from the first confluent correction to thermodynamic
functions of the model near Tc is more significant than the small contribution from the second
correction (τ 
 1, �1 is of the order of 0.5, and �2 > 2; see [21, 22]). The final expression
for the free energy of the CR assumes the following form:

FC R = −kT N ′[γ (C R)
0 + γ1τ + γ2τ

2 − γ
(C R)(0)+
3 τ 3ν − γ

(C R)(1)+
3 τ 3ν+�1 ]

γ
(C R)

0 = γ
(0)

0 + δ
(0)

0

γk = γ
(k)

0 + δ
(k)

0 k = 1, 2

γ
(C R)(l)+
3 = c3

νcl
�1

γ̄
(C R)(l)+
3 l = 0, 1.

(24)

Here ν = ln s/ ln E1 is the critical exponent of the correlation length. The coefficients γ
(C R)
0 ,

γ1, and γ2 (see table 3) are not universal, since they depend on microscopic parameters of
the Hamiltonian. Explicit expressions for the temperature-independent components of the
coefficients γ0 = γ

(0)
0 + γ

(1)
0 τ + γ

(2)
0 τ 2 and δ0 = δ

(0)
0 + δ

(1)
0 τ + δ

(2)
0 τ 2 are given in [22]. The

coefficients γ
(C R)(l)+
3 (l = 0, 1) are written as the product of the universal factor γ̄

(C R)(l)+
3 ,

independent of microscopic parameters, and the nonuniversal factor c3
νcl

�1
, which depends on
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these parameters. The values of cν = [c̃(0)

1 /( f0δ)]ν and c�1 = c(0)

20 [c̃(0)

1 /( f0δ)]�1 are presented
in table 3 for different values of the parameter s and the effective range b of the potential, while
the values of γ̄

(C R)(l)+
3 are given in table 4.

Using FC R , we can calculate other thermodynamic functions of the system in the CR
region at T > Tc. For the entropy SC R = −∂ FC R/∂T , internal energy UC R = FC R + T SC R ,
and specific heat CC R = T ∂SC R/∂T , we have

SC R = k N ′[s(C R)(0) + c0τ + u(C R)(0)+
3 τ 1−α + u(C R)(1)+

3 τ 1−α+�1 ]

UC R = kT N ′[γ1 + u1τ + u(C R)(0)+
3 τ 1−α + u(C R)(1)+

3 τ 1−α+�1 ]

CC R = k N ′[c0 + c(C R)(0)+
3 τ−α + c(C R)(1)+

3 τ�1−α]

(25)

where

s(C R)(0) = γ
(C R)
0 + γ1 c0 = 2(γ1 + γ2)

u(C R)(l)+
3 = c3

νcl
�1

ū(C R)(l)+
3 l = 0, 1

ū(C R)(0)+
3 = −3νγ̄

(C R)(0)+
3

ū(C R)(1)+
3 = −(3ν + �1)γ̄

(C R)(1)+
3

u1 = γ1 + 2γ2

c(C R)(l)+
3 = c3

νcl
�1

c̄(C R)(l)+
3

c̄(C R)(0)+
3 = −3ν(3ν − 1)γ̄

(C R)(0)+
3

c̄(C R)(1)+
3 = −(3ν + �1)(3ν + �1 − 1)γ̄

(C R)(1)+
3 .

(26)

Here α = 2 − 3ν is the critical exponent of the specific heat.

4. Thermodynamic functions of the system in the limiting Gaussian regime region

The contribution of long-wave modes of spin moment density oscillations to the free energy of
the 3D Ising model (k < B ′s−mτ ) taking into account the first confluent correction is calculated
according to the scheme proposed in [11, 22]. After the exit from the CR, the system goes over
to the LGR. In this case, while calculating the partition function component ZLG R from (19),
it is convenient to single out two regions of values of wavevectors. The first is the transition
region (TR) corresponding to values of k close to Bmτ

, while the second is the Gaussian region
corresponding to small values of the wavevector (k → 0). After the integration of the partition
function in several layers of the phase space of CV, which follow the point of exit from the CR
and determine the size of the TR, the system is described by a Gaussian density of measure.
Thus, we can write

Z LG R = Z (1)
LG R Z (2)

LG R. (27)

4.1. Transition region (TR)

The TR corresponds to m̃0 layers of the phase space of CV. The lower boundary of the TR
is determined by the point of exit of the system from the CR region (n = mτ + 1). The
upper boundary corresponds to the layer mτ + m̃0 + 1. The latter determines the beginning
of the Gaussian region in which the Gaussian distribution of spin density oscillation modes is
observed. A transition of the system to the LGR region is accompanied by an increase in the
value of hn as a function of n. Consequently, the condition for obtaining m̃0 is the equality

|hmτ +m̃′
0
| = A0

1 − s−3
(28)
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Table 5. Universal parts of coefficients in F(1)
LG R (29) and F(2)

LG R (30).

s f̄ (0)
T R f̄ (1)

T R f̄ (0)′ f̄ (1)′ γ̄ +
4

2.0000 0.6529 −3.9942 0.4749 × 10−5 −0.3800 × 10−4 2.7055
2.7349 0.8824 −3.3481 0.2155 × 10−5 −0.1107 × 10−4 2.1737
3.0000 0.9541 −3.1247 0.6587 × 10−6 −0.2945 × 10−5 2.1841

where A0 is a large number (A0 � 10). The value of m̃ ′
0 determined from (28) actually

determines the number m̃0 (see [22, 30]). It follows from [11, 43–46] containing the results
of numerical calculation of the partition function for the Ising model as well as the results of
analysis of RR that the evolution of the coefficients of effective densities of measures with
increasing number of the layer in the TR is successfully described by solutions of the RG
type. Consequently, F (1)

LG R can be calculated by using the solutions of RR. The free energy
contribution F (1)

LG R corresponding to Z (1)
LG R from (27) is defined as

F (1)
LG R = −kT N ′[ f (0)

T Rτ 3ν + f (1)
T Rτ 3ν+�1 ]

f (l)
T R = c3

νcl
�1

f̄ (l)
T R l = 0, 1

f̄ (0)
T R =

m̃0∑
m=0

s−3m f (0)
LG R1

(m)

f̄ (1)
T R = f̄T R1 + 3ν�0 f̄ (0)

T R f̄T R1 = c−1
�1

m̃0∑
m=0

s−3m f (1)
LG R1

(m)

(29)

where �0 = w
(0)

12 /( f0δ
√

ϕ0). The coefficients f (l)
LG R1

(m) (l = 0, 1) appearing in f̄ (l)
T R are given

in [22, 30]. The quantities f̄ (l)
T R (see table 5) do not depend on microscopic parameters.

4.2. Region of small values of wavevector (k → 0)

Introducing an infinitely weak external magnetic field H (or h = µBH, where µB is the
Bohr magneton), we obtain the following expression for the free energy component F (2)

LG R

corresponding to Z (2)
LG R from (27) (see [13, 30]):

F (2)
LG R = −kT N ′[ f (0)′τ 3ν + f (1)′τ 3ν+�1 ] − β Nγ +

4 h2τ−2ν(1 + a+
χτ�1)

f (l)′ = c3
νcl

�1
f̄ (l)′ l = 0, 1

f̄ (0)′ = s−3(m̃0+1) f (0)

f̄ (1)′ = f̄1′ + 3ν�0 f̄ (0)′ f̄1′ = c−1
�1

s−3(m̃0+1) f (1)

γ +
4 = c−2

ν γ̄ +
4 /(β�̃(0))

γ̄ +
4 = s2m̃0/(2g0)

a+
χ = −g1 − 2νc�1�0.

(30)

Here f (0) and f (1) can be presented in terms of coefficients g0 and g1 determining the quantity
d̃m′

τ
(k) = s−2(m′

τ −1)β�̃(0)g0(1 + g1τ
�1) + 2β�̃(0)b2k2 in the expression for the long-wave

part Z (2)
LG R of the partition function. The coefficients f̄ (l)′ and γ̄ +

4 are contained in table 5.
On the basis of (29) and (30), the general expression FLG R = F (1)

LG R + F (2)

LG R corresponding
to the contribution to the free energy from long-wave modes of spin moment density oscillations
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takes the form

FLG R = −kT N ′[ f (0)

LG Rτ 3ν + f (1)

LG Rτ 3ν+�1 ] − β Nγ +
4 h2τ−2ν(1 + a+

χτ�1)

f (l)
LG R = c3

νcl
�1

f̄ (l)
LG R

f̄ (l)
LG R = f̄ (l)

T R + f̄ (l)′ l = 0, 1.

(31)

In view of the very small values of the universal quantities f̄ (l)′ , the values of f̄ (l)
LG R practically

coincide with the values of f̄ (l)
T R (see table 5).

For H = 0, the entropy, internal energy, and specific heat of the system corresponding to
LGR are defined by the following relations:

SLG R = k N ′[u(LG R)(0)

3 τ 1−α + u(LG R)(1)

3 τ 1−α+�1 ]

ULG R = kT N ′[u(LG R)(0)

3 τ 1−α + u(LG R)(1)

3 τ 1−α+�1 ]

CLG R = k N ′[c(LG R)(0)
3 τ−α + c(LG R)(1)

3 τ�1−α]

(32)

where

u(LG R)(l)
3 = c3

νcl
�1

ū(LG R)(l)
3 l = 0, 1

ū(LG R)(0)

3 = 3ν f̄ (0)

LG R

ū(LG R)(1)

3 = (3ν + �1) f̄ (1)
LG R

c(LG R)(l)
3 = c3

νcl
�1

c̄(LG R)(l)
3

c̄(LG R)(0)

3 = 3ν(3ν − 1) f̄ (0)

LG R

c̄(LG R)(1)

3 = (3ν + �1)(3ν + �1 − 1) f̄ (1)
LG R.

(33)

Let us now write out the complete expressions for the free energy and other thermodynamic
functions of the 3D Ising model near the phase transition point.

5. Total thermodynamic characteristics of Ising-like system for T > Tc taking into
account first confluent correction

In accordance with (18), the total free energy of the system in zero external field reads

F = −kT N ′[γ0 + γ1τ + γ2τ
2 + γ

(0)+
3 τ 3ν + γ

(1)+
3 τ 3ν+�1 ]

γ0 = s3
0 ln 2 + γ

(C R)
0

γ
(l)+
3 = c3

νcl
�1

γ̄
(l)+
3

γ̄
(l)+
3 = −γ̄

(C R)(l)+
3 + f̄ (l)

LG R l = 0, 1.

(34)

The coefficients γ1 and γ2 are defined in (24). The terms proportional to integral powers of τ

in (34) appear exclusively due to the inclusion of short-wave modes of oscillations. The terms
proportional to τ 3ν and τ 3ν+�1 (the nonanalytic component of the free energy) are formed as a
result of inclusion of short-wave as well as long-wave modes of oscillations. The first confluent
correction appears due to the smaller eigenvalue E2 of the RG linear transformation matrix
taken into account in the solutions of RR.

The main advantage of the expression for F is the presence of relations connecting its
coefficients with microscopic parameters of the system and the coordinates of a fixed point of
RR. The coefficients γ

(l)+
3 (l = 0, 1) are presented in the form of the product of the universal

component γ̄
(l)+
3 and the nonuniversal factor depending on microscopic parameters through

cν and c�1 (see (34)). The leading critical amplitudes and the amplitudes of the confluent
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correction for the specific heat and other thermodynamic characteristics of the system can be
presented in a similar way.

The coefficient γ0 as well as γ1 and γ2 are given in table 3. Numerical values of γ̄
(l)+
3 are

contained in table 4. The coefficients of the entropy S, internal energy U , and specific heat C
can be expressed in terms of the coefficients of the free energy. Taking into account the first
confluent correction, we arrive at the expressions

S = k N ′[s(0) + c0τ + u(0)+
3 τ 1−α + u(1)+

3 τ 1−α+�1 ]

U = kT N ′[γ1 + u1τ + u(0)+
3 τ 1−α + u(1)+

3 τ 1−α+�1 ]

C = k N ′[c0 + c(0)+
3 τ−α + c(1)+

3 τ�1−α].

(35)

Here

s(0) = γ0 + γ1

u(l)+
3 = c3

νcl
�1

ū(l)+
3 l = 0, 1

ū(0)+
3 = 3νγ̄

(0)+
3

ū(1)+
3 = (3ν + �1)γ̄

(1)+
3

c(l)+
3 = c3

νcl
�1

c̄(l)+
3

c̄(0)+
3 = 3ν(3ν − 1)γ̄

(0)+
3

c̄(1)+
3 = (3ν + �1)(3ν + �1 − 1)γ̄

(1)+
3 .

(36)

The coefficients c0 and u1 are given in (26).
The formula for the specific heat (see (35)) for the model under investigation can be written

in the form [47, 48]

C

k N ′ = A+

α
τ−α(1 + αa+

c τ�1) + B+

A+ = c3
ναc̄(0)+

3 a+
c = c�1

α

c̄(1)+
3

c̄(0)+
3

B+ = c0.

(37)

Such an important characteristic of the system as the susceptibility per particle

χ = − 1

N

∂2 FLG R

∂H2
(38)

can be calculated using (31). For infinitely small values of the external field H near Tc, it is
defined as

χ = �+τ−γ (1 + a+
χτ�1)

µ2
B

�̃(0)

�+ = 2c−2
ν γ̄ +

4

a+
χ = c�1 ā+

χ

ā+
χ = −ḡ1 − 2ν�0.

(39)

Here γ = 2ν is the critical exponent of the susceptibility. The value of ḡ1 does not depend on
microscopic parameters and can be obtained as a result of the elimination of the nonuniversal
factor c�1 from g1.

The coefficients for the specific heat C/k N ′ (37) and susceptibility χ (39) are given in
table 6. It should be emphasized that the calculated amplitudes a+

c and a+
χ of the confluent

corrections are in accord with the results obtained by Liu and Fisher [49] who considered



Critical behaviour of 3D Ising-like systems studied using the ρ6 model: I. T > Tc 10127

Table 6. Values of coefficients in the expressions (37) for the specific heat C/k N ′ and (39) for the
susceptibility χ .

b bI bII bIII c 2c

s = 2.0000
A+ 1.0876 0.9960 0.9609 0.6620 0.6471
a+

c −1.2609 −1.8262 −2.0389 −3.7773 −3.8634
B+ −10.5696 −9.4620 −9.0397 −5.4430 −5.2601
�+ 1.8711 1.9842 2.0321 2.6052 2.6450
a+
χ −0.0691 −0.1001 −0.1118 −0.2071 −0.2118

s = 2.7349
A+ 0.8113 0.7439 0.7184 0.5050 0.4944
a+

c −2.3816 −2.7420 −2.8773 −3.9838 −4.0397
B+ −10.8022 −9.7375 −9.3355 −5.9193 −5.7286
�+ 2.1659 2.2948 2.3488 2.9709 3.0134
a+
χ −0.1177 −0.1355 −0.1422 −0.1969 −0.1996

s = 3.0000
A+ 0.7238 0.6644 0.6420 0.4558 0.4465
a+

c −2.6494 −2.9650 −3.0832 −4.0460 −4.0947
B+ −10.4343 −9.4274 −9.0478 −5.7981 −5.6074
�+ 2.4427 2.5860 2.6459 3.3248 3.3710
a+
χ −0.1291 −0.1445 −0.1502 −0.1971 −0.1995

leading corrections to scaling amplitudes for Ising models with the interaction between nearest
neighbours on sc (simple cubic), bcc (body-centred cubic), and fcc (face-centred cubic)
lattices. It was proved in [49] that the amplitudes of these corrections for susceptibility,
correlation length, specific heat, and spontaneous magnetization have negative sign for all
three lattices. Liu and Fisher also noted the agreement between the results obtained, the
results from other high-temperature expansions, and the results of the field-theory analysis.
Our values �+ = 1.8711, a+

χ = −0.0691 (see table 6, s = 2.0000, b = bI), for example,
accord with the recent high-temperature estimates �+ = 1.111(1), a+

χ = −0.10(3) obtained
by Butera and Comi [50].

6. Conclusions

The analytic method for calculating the thermodynamic functions of 3D Ising-like systems
above the critical temperature Tc is briefly presented in the higher non-Gaussian approximation
(ρ6 model) taking into account the first confluent correction. The starting point of the problem
statement in the CV method under study is the Hamiltonian of the 3D Ising model. After
passing to the CV set, the Jacobian of the transition from the spin variables to the CV is
calculated to obtain a partition function functional similar to the Ginzburg–Landau functional.
The partition function of the spin system is integrated over the layers of the CV phase space.
The corresponding RG transformation can be related to one of Wilson type. Although the
CV method like the Wilson approach exploits RG ideas, it is based on the use of a non-
Gaussian density of measure. The main feature is the integration of short-wave spin density
oscillation modes, which is generally done without using perturbation theory. The short-wave
modes are characterized by the presence of RG symmetry and are described by a non-Gaussian
measure density. These modes are responsible for the formation of critical exponents and for
renormalization of the coefficient of the distribution describing the long-wave modes. The
calculation for long-wave modes of spin moment density oscillations is based on using the
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Gaussian density of measure as the basis density. The contributions to the thermodynamic
functions of an Ising ferromagnet (free energy, entropy, internal energy, and specific heat) from
the short-wave and long-wave modes are calculated separately. A calculation technique for
confluent corrections is elaborated in the course of determining the thermodynamic functions.

The CV method allows one to calculate the partition function of the system and to obtain
not only the universal quantities (critical exponents) but also the nonuniversal characteristics.
The advantage of the proposed method is the possibility of deriving analytic expressions
for the phase transition temperature and the amplitudes of thermodynamic characteristics as
functions of microscopic parameters of the initial system (the lattice constant and parameters
of the interaction potential), which makes this method useful in describing the phase transitions
in a wide class of 3D systems. A nonuniversal factor determined by microscopic parameters
of the system is singled out in the expressions for leading critical amplitudes and correction-
to-scaling amplitudes of the thermodynamic characteristics. These amplitudes for the specific
heat and susceptibility as well as the phase transition temperature are obtained for various
interaction potential ranges.

The 3D Ising-like system thermodynamics at T < Tc (the ρ6 model approximation) and
plots of the temperature dependences of the entropy, specific heat, and other thermodynamic
characteristics near Tc (above and below Tc) for various values of the effective radius of the
exponentially decreasing interaction potential will be the subject of the following paper.

References

[1] Stanley H E 1971 Introduction to Phase Transitions and Critical Phenomena (Oxford: Clarendon)
[2] Amit D J 1984 Field Theory, the Renormalization Group, and Critical Phenomena (Singapore: World Scientific)
[3] Zinn-Justin J 1996 Quantum Field Theory and Critical Phenomena (Oxford: Clarendon)
[4] Kleinert H and Schulte-Frohlinde V 2001 Critical Properties of ϕ4-Theories (Singapore: World Scientific)
[5] Wilson K G and Kogut J 1974 Phys. Rep. C 12 75
[6] Binder K 1985 J. Comput. Phys. 59 1
[7] Fisher M E 1998 Rev. Mod. Phys. 70 653
[8] Campostrini M, Pelissetto A, Rossi P and Vicari E 1999 Phys. Rev. E 60 3526
[9] Yukhnovskii I R 1977 Dokl. Akad. Nauk SSSR 232 312 (Engl. transl. 1977 Sov. Phys.–Dokl. 22 18)

[10] Yukhnovskii I R 1978 Teor. Mat. Fiz. 36 373
[11] Yukhnovskii I R 1987 Phase Transitions of the Second Order. Collective Variables Method (Singapore: World

Scientific)
[12] Yukhnovskii I R 1989 Riv. Nuovo Cimento 12 1
[13] Yukhnovskii I R, Kozlovskii M P and Pylyuk I V 2001 Microscopic Theory of Phase Transitions in the Three-

Dimensional Systems (Lviv: Eurosvit) (in Ukrainian)
[14] Usatenko Z E and Kozlovskii M P 2000 Phys. Rev. B 62 9599
[15] Yukhnovskii I R, Kozlovskii M P and Pylyuk I V 1991 Z. Naturf. a 46 1
[16] Kozlovskii M P, Pylyuk I V and Yukhnovskii I R 1991 Teor. Mat. Fiz. 87 293
[17] Kozlovskii M P, Pylyuk I V and Yukhnovskii I R 1991 Teor. Mat. Fiz. 87 434
[18] Kozlovskii M P and Pylyuk I V 1987 Proc. All-Union Conf. on Modern Problems in Statistical Physics (L’vov,

Feb. 1987) vol 2 (Kiev: Naukova Dumka) p 50 (in Russian)
[19] Kozlovskii M P 1989 Teor. Mat. Fiz. 78 422
[20] Kozlovskii M P and Pylyuk I V 1990 Ukr. Fiz. Zh. 35 146 (in Ukrainian)
[21] Kozlovskii M P, Pylyuk I V and Dukhovii V V 1997 Condens. Matter Phys. 11 17
[22] Kozlovskii M P, Pylyuk I V and Dukhovii V V 1999 Preprint cond-mat/9907468
[23] Guida R and Zinn-Justin J 1998 J. Phys. A: Math. Gen. 31 8103
[24] Hasenbusch M 1999 J. Phys. A: Math. Gen. 32 4851
[25] Tsypin M M 1994 Phys. Rev. Lett. 73 2015
[26] Tsypin M M 1997 Phys. Rev. B 55 8911
[27] Kozlovskii M P, Pylyuk I V and Usatenko Z E 1996 Phys. Status Solidi b 197 465
[28] Kozlovskii M P 1984 Preprint ITP-84-35R (Inst. Theor. Phys., Acad. Sci. Ukr. SSR, Kiev) (in Russian)
[29] Dukhovii V V, Kozlovskii M P and Pylyuk I V 1996 Teor. Mat. Fiz. 107 288



Critical behaviour of 3D Ising-like systems studied using the ρ6 model: I. T > Tc 10129

[30] Pylyuk I V and Kozlovskii M P 1997 Preprint ICMP-97-06U (Inst. Cond. Matt. Phys., Natl Acad. Sci. Ukraine,
Lviv) (in Ukrainian)

[31] Kozlovskii M P and Pylyuk I V Preprint 1985 ITP-85-23E (Inst. Theor. Phys., Acad. Sci. Ukr. SSR, Kiev) (in
English)

[32] Ma S 1976 Modern Theory of Critical Phenomena (Reading, MA: Benjamin)
[33] Kozlovskii M P, Dukhovii V V and Pylyuk I V 2000 Condens. Matter Phys. 3 727
[34] Moore M A, Jasnov D and Wortis M 1969 Phys. Rev. Lett. 22 940
[35] Ferer M and Wortis M 1972 Phys. Rev. B 6 3426
[36] Butera P and Comi M 2000 Phys. Rev. B 62 14837
[37] Reich W 1984 J. Phys. A: Math. Gen. 17 3553
[38] Pawley G S, Swendsen R H, Wallace D J and Wilson K G 1984 Phys. Rev. B 29 4030
[39] Ferrenberg A M and Landau D P 1991 Phys. Rev. B 44 5081
[40] Landau D P and Ferrenberg A M 1993 J. Kor. Phys. Soc. 26 S371
[41] Landau D P 1994 Physica A 205 41
[42] Liu A J and Fisher M E 1989 Physica A 156 35
[43] Yukhnovskii I R, Kozlovskii M P and Kolomiets V A 1982 Ukr. Fiz. Zh. 27 925 (in Russian)
[44] Yukhnovskii I R, Kozlovskii M P and Kolomiets V A 1982 Ukr. Fiz. Zh. 27 930 (in Russian)
[45] Yukhnovskii I R, Kozlovskii M P and Kolomiets V A 1982 Ukr. Fiz. Zh. 27 1399 (in Russian)
[46] Kozlovskii M P, Pylyuk I V and Kolomiets V A 1984 Preprint ITP-84-177R (Inst. Theor. Phys., Acad. Sci. Ukr.

SSR, Kiev) (in Russian)
[47] Bagnuls C and Bervillier C 1981 Phys. Rev. B 24 1226
[48] Nicoll J F and Albright P C 1986 Phys. Rev. B 34 1991
[49] Liu A J and Fisher M E 1990 J. Stat. Phys. 58 431
[50] Butera P and Comi M 1998 Phys. Rev. B 58 11552


